Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life Sci ; 257: 118037, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32622942

RESUMO

Palmitoylethanolamide (PEA) is an endogenous lipid mediator that, also by blunting astrocyte activation, demonstrated beneficial properties in several in vitro and in vivo models of Alzheimer's disease (AD). In the present study, we used astrocyte-neuron co-cultures from 3xTg-AD mouse (i.e. an animal model of AD) cerebral cortex to further investigate on the role of astrocytes in PEA-induced neuroprotection. To this aim, we evaluated the number of viable cells, apoptotic nuclei, microtubule-associated protein-2 (MAP2) positive cells and morphological parameters in cortical neurons co-cultured with cortical astrocytes pre-exposed, or not, to Aß42 (0.5 µM; 24 h) or PEA (0.1 µM; 24 h). Pre-exposure of astrocytes to Aß42 failed to affect the viability, the number of neuronal apoptotic nuclei, MAP2 positive cell number, neuritic aggregations/100 µm, dendritic branches per neuron, the neuron body area, the length of the longest dendrite and number of neurites/neuron in 3xTg-AD mouse astrocyte-neuron co-cultures. Compared to neurons from wild-type (non-Tg) mouse co-cultures, 3xTg-AD mouse neurons co-cultured with astrocytes from this mutant mice displayed higher number of apoptotic nuclei, lower MAP2 immunoreactivity and several morphological changes. These signs of neuronal suffering were significantly counteracted when the 3xTg-AD mouse cortical neurons were co-cultured with 3xTg-AD mouse astrocytes pre-exposed to PEA. The present data suggest that in astrocyte-neuron co-cultures from 3xTg-AD mice, astrocytes contribute to neuronal damage and PEA, by possibly counteracting reactive astrogliosis, improved neuronal survival. These findings further support the role of PEA as a possible new therapeutic opportunity in AD treatment.


Assuntos
Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Etanolaminas/farmacologia , Ácidos Palmíticos/farmacologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Amidas , Peptídeos beta-Amiloides/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Córtex Cerebral/metabolismo , Técnicas de Cocultura , Modelos Animais de Doenças , Etanolaminas/metabolismo , Gliose , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Ácidos Palmíticos/metabolismo , Proteínas tau/metabolismo
2.
Mol Neurobiol ; 56(5): 3563-3575, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30151725

RESUMO

The reinforcing effects of Δ9-tetrahydrocannabinol (THC) in rats and monkeys, and the reinforcement-related dopamine-releasing effects of THC in rats, can be attenuated by increasing endogenous levels of kynurenic acid (KYNA) through systemic administration of the kynurenine 3-monooxygenase inhibitor, Ro 61-8048. KYNA is a negative allosteric modulator of α7 nicotinic acetylcholine receptors (α7nAChRs) and is synthesized and released by astroglia, which express functional α7nAChRs and cannabinoid CB1 receptors (CB1Rs). Here, we tested whether these presumed KYNA autoreceptors (α7nAChRs) and CB1Rs regulate glutamate release. We used in vivo microdialysis and electrophysiology in rats, RNAscope in situ hybridization in brain slices, and primary culture of rat cortical astrocytes. Acute systemic administration of THC increased extracellular levels of glutamate in the nucleus accumbens shell (NAcS), ventral tegmental area (VTA), and medial prefrontal cortex (mPFC). THC also reduced extracellular levels of KYNA in the NAcS. These THC effects were prevented by administration of Ro 61-8048 or the CB1R antagonist, rimonabant. THC increased the firing activity of glutamatergic pyramidal neurons projecting from the mPFC to the NAcS or to the VTA in vivo. These effects were averted by pretreatment with Ro 61-8048. In vitro, THC elicited glutamate release from cortical astrocytes (on which we demonstrated co-localization of the CB1Rs and α7nAChR mRNAs), and this effect was prevented by KYNA and rimonabant. These results suggest a key role of astrocytes in interactions between the endocannabinoid system, kynurenine pathway, and glutamatergic neurotransmission, with ramifications for the pathophysiology and treatment of psychiatric and neurodegenerative diseases.


Assuntos
Astrócitos/metabolismo , Encéfalo/metabolismo , Dronabinol/toxicidade , Ácido Glutâmico/metabolismo , Ácido Cinurênico/metabolismo , Recompensa , Potenciais de Ação/efeitos dos fármacos , Animais , Astrócitos/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Células Cultivadas , Masculino , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Rimonabanto/farmacologia , Sulfonamidas/farmacologia , Tiazóis/farmacologia , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/genética , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
3.
Front Pharmacol ; 9: 327, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29674969

RESUMO

The present study was aimed to further characterize the pharmacological profile of N-[4-(trifluoromethyl) benzyl]-4-methoxybutyramide (GET73), a putative negative allosteric modulator (NAM) of metabotropic glutamate subtype 5 receptor (mGluR5) under development as a novel medication for the treatment of alcohol dependence. This aim has been accomplished by means of a series of in vitro functional assays. These assays include the measure of several down-stream signaling [intracellular Ca++ levels, inositol phosphate (IP) formation and CREB phosphorylation (pCREB)] which are generally affected by mGluR5 ligands. In particular, GET73 (0.1 nM-10 µM) was explored for its ability to displace the concentration-response curve of some mGluR5 agonists/probes (glutamate, L-quisqualate, CHPG) in different native preparations. GET73 produced a rightward shift of concentration-response curves of glutamate- and CHPG-induced intracellular Ca++ levels in primary cultures of rat cortical astrocytes. The compound also induced a rightward shift of concentration response curve of glutamate- and L-quisqualate-induced increase in IP turnover in rat hippocampus slices, along with a reduction of CHPG (10 mM)-induced increase in IP formation. Moreover, GET73 produced a rightward shift of concentration-response curve of glutamate-, CHPG- and L-quisqualate-induced pCREB levels in rat cerebral cortex neurons. Although the engagement of other targets cannot be definitively ruled out, these data support the view that GET73 acts as an mGluR5 NAM and support the significance of further investigating the possible mechanism of action of the compound.

4.
J Psychopharmacol ; 30(2): 112-27, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26755548

RESUMO

Neurotensin is a tridecapeptide originally identified in extracts of bovine hypothalamus. This peptide has a close anatomical and functional relationship with the mesocorticolimbic and nigrostriatal dopamine system. Neural circuits containing neurotensin were originally proposed to play a role in the mechanism of action of antipsychotic agents. Additionally, neurotensin-containing pathways were demonstrated to mediate some of the rewarding and/or sensitizing properties of drugs of abuse.This review attempts to contribute to the understanding of the role of neurotensin and its receptors in drug abuse. In particular, we will summarize the potential relevance of neurotensin, its related compounds and neurotensin receptors in substance use disorders, with a focus on the preclinical research.


Assuntos
Neurotensina/metabolismo , Receptores de Neurotensina/metabolismo , Transtornos Relacionados ao Uso de Substâncias/fisiopatologia , Animais , Antipsicóticos/farmacologia , Encéfalo/metabolismo , Dopamina/metabolismo , Humanos , Recompensa
5.
Alcohol Alcohol ; 51(2): 128-35, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26271115

RESUMO

AIMS: N-[(4-trifluoromethyl) benzyl] 4-methoxybutyramide (GET73) may be considered a promising therapeutic agent for the treatment of alcohol use disorders. The compound displayed anti-alcohol and anxiolytic properties in rat. In the present study, an in vitro experimental model of chronic ethanol treatment was used to investigate the ability of the compound to counteract the ethanol-induced neurotoxicity. METHODS: Primary cultures of rat hippocampal neurons were exposed to ethanol (75 mM; 4 days) and the neuroprotective effects of GET73 were assessed by evaluating cell viability, cell morphology, glutamate levels and reactive oxygen species production. RESULTS: The exposure to ethanol induced a reduction of cell viability, an alteration of cytoskeleton, a decrease in extracellular glutamate levels and an increase of reactive oxygen species production. The addiction of GET73 (1 and 10 µM) 1 h before and during chronic ethanol exposure prevented all the above ethanol-induced effects. Based on the proposed GET73 mechanism of action, the effects of mGlu5 receptor negative allosteric modulator, 2-methyl-6-(phenylethynyl)-pyridine (MPEP), on ethanol-induced reduction of cell viability were also assessed. The results indicated that the addiction of MPEP (100 µM) 1 h before and during chronic ethanol exposure prevented the ethanol-induced cell viability reduction. CONCLUSION: The present findings provide the first evidence that GET73 shows a neuroprotective role against ethanol-induced neurotoxicity in primary cultures of rat hippocampal neurons. Together with previous findings, these results suggest that GET73 possesses multifaceted properties thus lending further support to the significance of developing GET73 as a therapeutic tool for use in the treatment of alcohol use disorders.


Assuntos
Anilidas/farmacologia , Etanol/toxicidade , Hipocampo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Hipocampo/metabolismo , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo
6.
Curr Protein Pept Sci ; 15(7): 681-90, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25175457

RESUMO

The tridecapeptide neurotensin (NT) acts as neurotransmitter in the central nervous system and in the periphery. NT and NT receptors are largely localized in dopamine (DA)-enriched regions of the mammalian brain. Accordingly, numerous studies indicate the presence of close functional interactions between DA neurons and the peptide. Among others mechanisms, it has been suggested that NT could modulate nigrostriatal, mesolimbic and meso-cortical DA transmission through an antagonistic receptor-receptor interaction between the NT receptor subtype 1 (NTS1) and the dopamine D2 receptor (D2R). In particular, it was originally demonstrated that the peptide reduces the D2R agonist affinity in striatal sections and in striatal membrane preparations. These effects could be a consequence of the direct allosteric NTS1/D2 receptor interactions leading to a decrease in the DA agonist affinity at the D2 receptor. Several neurochemical, biochemical and co-immunoprecipitation data have successively reinforced the indication of the presence of direct NTS1-D2 receptor interactions in the mammalian brain. The present mini-review attempts to provide a summary of current knowledge, mainly emerging from our microdialysis studies, supporting the presence of a NTS1/D2 receptor heteromer in the brain. The pre and post-synaptic mechanisms underlying the involvement of this heteromer in the striatopallidal GABA and mesocorticolimbic DA neurotransmission are discussed especially for their relevance in Parkinson's disease and schizophrenia, respectively.


Assuntos
Encéfalo/metabolismo , Doença de Parkinson/metabolismo , Receptores de Dopamina D2/metabolismo , Receptores de Neurotensina/metabolismo , Esquizofrenia/metabolismo , Animais , Dopamina/metabolismo , Humanos , Neurotensina/metabolismo , Transmissão Sináptica , Ácido gama-Aminobutírico/metabolismo
7.
Curr Protein Pept Sci ; 15(7): 673-80, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25175458

RESUMO

Striatal dopamine adenosine A2A and D2 receptors interact to modulate some aspects of motor and motivational function. The demonstration of A2A/D2 receptor heteromerization in living cells constituted a progress for understanding the neurobiology of dopamine D2 and adenosine A2A receptors. In fact, the existence of putative striatalA2A/D2 receptor heteromers has been suggested to be important for striatal function under both normal and pathological conditions, such as Parkinson's disease. Consequently, the antagonistic A2A-D2 receptor interactions in a putative striatal receptor heteromer on striato-pallidal GABA neuron led to the introduction of A2A receptor antagonists as possible anti- Parkinsonian drugs. The present mini-review briefly summarizes the main findings supporting the presence of antagonistic A2A-D2 receptor interactions in putative receptor heteromers in the basal ganglia. Special emphasis is given to in vivo microdialysis findings demonstrating the functional role putative A2A/D2 heteromers on striato-pallidal GABA neurons play in the modulation of this pathway, in which A2A receptors inhibit D2 receptor signaling. The possible relevance of compounds targeting the putative striatal A2A/D2 heteromer in the Parkinson's disease pharmacological treatment is also discussed.


Assuntos
Doença de Parkinson/metabolismo , Receptor A2A de Adenosina/metabolismo , Receptores de Dopamina D2/metabolismo , Ácido gama-Aminobutírico/metabolismo , Antagonistas do Receptor A2 de Adenosina/farmacologia , Animais , Antiparkinsonianos/farmacologia , Descoberta de Drogas , Humanos , Terapia de Alvo Molecular , Doença de Parkinson/tratamento farmacológico , Multimerização Proteica , Receptor A2A de Adenosina/química , Receptores de Dopamina D2/química
8.
Neurochem Int ; 61(5): 759-66, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22796212

RESUMO

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is considered one of the most toxic dioxin-like compounds. It is ubiquitous in foodstuffs of animal origin and accumulates in the fatty tissues of animals and humans. Prenatal TCDD exposure has been associated, beside other effects, with persistent impaired cognitive development. In the present study, the effects of maternal exposure to TCDD during pregnancy on cortical neuron development at birth and cortical glutamate transmission in new-born, 14- and 60-day-old rat offspring, were investigated. A single dose (0.7 µg/kg) of TCDD dissolved in corn oil was orally administrated to the dams on gestational day 18; controls dams were treated with the vehicle. All the experiments have been performed on the male offspring from vehicle-treated (i.e. control group) and TCDD-treated dams. Primary cultures of cerebral cortical neurons obtained from 1-day-old rats born from mothers exposed to TCDD displayed a reduction in cell viability (MTT assay) and an increase in the number of apoptotic nuclei (nuclear staining with Hoechst 33258) possibly associated with altered dendrite outgrowth (MAP2-immunoreactivity) with respect to control cell cultures. These changes were associated with impairment in cortical glutamate transmission, characterized by a reduction in basal and K(+)-evoked outflow as well as a decrease in [(3)H]glutamate uptake. Interestingly, the prenatal TCDD-induced alteration of cortical glutamate signaling is persistent since it was also present in 14- and 60-day-old offspring. Taken together, these results suggest that a single prenatal exposure to TCDD produces alterations in cortical neuron development associated with a long-term dysfunction of glutamate transmission in rat cerebral cortex. The possible relevance of these findings for the understanding of the long-lasting cognitive deficit observed in the offspring from mothers exposed to the toxicant during pregnancy, is discussed.


Assuntos
Córtex Cerebral/metabolismo , Ácido Glutâmico/efeitos adversos , Neurogênese/fisiologia , Neurônios/metabolismo , Dibenzodioxinas Policloradas/toxicidade , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Animais , Animais Recém-Nascidos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/crescimento & desenvolvimento , Feminino , Ácido Glutâmico/fisiologia , Masculino , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Ratos , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Fatores de Tempo
9.
Eur J Neurosci ; 35(2): 207-20, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22211865

RESUMO

The current microdialysis study elucidates a functional interaction between the striatal neurotensin NTS(1) receptor and the striatal dopamine D(2) and N-methyl-d-aspartic acid (NMDA) receptors in the regulation of striatopallidal gamma-aminobutyric acid (GABA) and glutamate levels after an ipsilateral intranigral 6-hydroxydopamine-induced lesion of the ascending dopamine pathways to the striatum. Lateral globus pallidus GABA levels were higher in the lesioned group while no change was observed in striatal GABA and glutamate levels. The 6-hydroxydopamine-induced lesion did not alter the ability of intrastriatal NT (10 nm) to counteract the decrease in pallidal GABA and glutamate levels induced by the dopamine D(2) -like receptor agonist quinpirole (10 µm). A more pronounced increase in the intrastriatal NMDA- (10 µm) induced increase in pallidal GABA levels was observed in the lesioned group while it attenuated the increase in striatal glutamate levels and amplified the increase in pallidal glutamate levels compared with that observed in the controls. NT enhanced the NMDA-induced increase in pallidal GABA and glutamate and striatal glutamate levels; these effects were counteracted by the NTS(1) antagonist SR48692 (100 nm) in both groups. These findings demonstrate an inhibitory striatal dopamine D(2) and an excitatory striatal NMDA receptor regulation of striatopallidal GABA transmission in both groups. These actions are modulated by NT via antagonistic NTS(1) /D(2) and facilitatory NTS(1) /NMDA receptor-receptor interactions, leading to enhanced glutamate drive of the striatopallidal GABA neurons associated with motor inhibition, effects which all are counteracted by SR48692. Thus, NTS(1) antagonists in combination with conventional treatments may provide a novel therapeutic strategy in Parkinson's disease.


Assuntos
Ácido Glutâmico/metabolismo , Transtornos Parkinsonianos/metabolismo , Receptores de Dopamina D2/metabolismo , Receptores de N-Metil-D-Aspartato/fisiologia , Receptores de Neurotensina/metabolismo , Ácido gama-Aminobutírico/biossíntese , Adrenérgicos/toxicidade , Animais , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Globo Pálido/efeitos dos fármacos , Globo Pálido/metabolismo , Masculino , Microdiálise , Vias Neurais/metabolismo , Oxidopamina/toxicidade , Transtornos Parkinsonianos/fisiopatologia , Ratos , Ratos Sprague-Dawley , Transmissão Sináptica/fisiologia
10.
J Neural Transm (Vienna) ; 117(5): 593-7, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20354886

RESUMO

Previous studies have indicated that cocaine binding sites contain both high- and low-affinity binding components and have actions not related to dopamine uptake inhibition. Therefore, it has been studied if concentrations of cocaine in the range of 0.1-100 nM can affect not only dopamine uptake but also the quinpirole-induced inhibition of the K(+)-evoked [(3)H]-dopamine efflux from rat striatal synaptosomes. It was found that quinpirole-induced inhibition of K(+)-evoked [(3)H]-dopamine efflux was significantly enhanced by cocaine at 1 and 10 nM but not at 0.1 nM with cocaine alone being inactive and 1 nM cocaine lacking effects on [(3)H]-dopamine uptake in rat striatal synaptosomes. The results indicate the existence of a novel allosteric agonist action of cocaine in low concentrations, not affecting dopamine uptake, at striatal D(2) autoreceptors modulating striatal dopamine transmission.


Assuntos
Cocaína/farmacologia , Corpo Estriado/efeitos dos fármacos , Agonistas de Dopamina/farmacologia , Dopamina/metabolismo , Potássio/metabolismo , Terminações Pré-Sinápticas/efeitos dos fármacos , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/fisiologia , Animais , Autorreceptores/efeitos dos fármacos , Autorreceptores/fisiologia , Ligação Competitiva/efeitos dos fármacos , Ligação Competitiva/fisiologia , Linhagem Celular , Corpo Estriado/metabolismo , Inibidores da Captação de Dopamina/farmacologia , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Humanos , Masculino , Potássio/farmacologia , Terminações Pré-Sinápticas/metabolismo , Quimpirol/farmacologia , Ensaio Radioligante , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D2/efeitos dos fármacos , Receptores de Dopamina D2/metabolismo , Frações Subcelulares , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/metabolismo , Trítio/metabolismo
11.
Cereb Cortex ; 18(8): 1748-57, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18063561

RESUMO

In view of the ability of neurotensin (NT) to increase glutamate release, the role of NT receptor mechanisms in oxygen-glucose deprivation (OGD)-induced neuronal degeneration in cortical cultures has been evaluated by measuring lactate dehydrogenase (LDH) levels, mitochondrial dehydrogenase activity with 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide levels, and microtubule-associated protein 2 (MAP2) immunoreactivity. Apoptotic nerve cell death was analyzed measuring chromatin condensation with Hoechst 33258, annexin V staining, and caspase-3 activity. Furthermore, the involvement of glutamate excitotoxicity in the neurodegeneration-enhancing actions of NT was analyzed by measurement of extracellular glutamate levels. NT enhanced the OGD-induced increase of LDH, endogenous extracellular glutamate levels, and apoptotic nerve cell death. In addition, the peptide enhanced the OGD-induced loss of mitochondrial functionality and increase of MAP2 aggregations. These effects were blocked by the neurotensin receptor 1 (NTR1) antagonist SR48692. Unexpectedly, the antagonist at 100 nM counteracted not only the NT effects but also some OGD-induced biochemical and morphological alterations. These results suggest that NTR1 receptors may participate in neurodegenerative events induced by OGD in cortical cultures, used as an in vitro model of cortical ischemia. The NTR1 receptor antagonists could provide a new tool to explore the clinical possibilities and thus to move from chemical compound to effective drug.


Assuntos
Apoptose/fisiologia , Córtex Cerebral/metabolismo , Glucose/deficiência , Ácido Glutâmico/metabolismo , Oxigênio/metabolismo , Receptores de Neurotensina/metabolismo , Animais , Morte Celular/fisiologia , Hipóxia Celular/fisiologia , Células Cultivadas , Líquido Extracelular/metabolismo , Glucose/metabolismo , Ácido Glutâmico/biossíntese , Neurônios/metabolismo , Neurônios/patologia , Ratos , Ratos Sprague-Dawley
12.
Brain Res Rev ; 55(1): 144-54, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17448541

RESUMO

The tridecapeptide neurotensin (NT) acts in the mammalian brain as a primary neurotransmitter or neuromodulator of classical neurotransmitters. Morphological and functional in vitro and in vivo studies have demonstrated the existence of close interactions between NT and dopamine both in limbic and in striatal brain regions. Additionally, biochemical and neurochemical evidence indicates that in these brain regions NT plays also a crucial role in the regulation of the aminoacidergic signalling. It is suggested that in the nucleus accumbens the regulation of prejunctional dopaminergic transmission induced by NT may be primarily due to indirect mechanism(s) involving mediation via the aminoacidergic neuronal systems with increased glutamate release followed by increased GABA release in the nucleus accumbens rather than a direct action of the peptide on accumbens dopaminergic terminals. The neurochemical profile of action of NT in the control of the pattern of dopamine, glutamate and GABA release in the nucleus accumbens differs to a substantial degree from that shown by the peptide in the dorsal striatum. The neuromodulatory NT mechanisms in the regulation of the ventral striato-pallidal GABA pathways are discussed and their relevance for schizophrenia is underlined.


Assuntos
Dopamina/metabolismo , Glutamatos/metabolismo , Neurotensina/farmacologia , Núcleo Accumbens/metabolismo , Ácido gama-Aminobutírico/metabolismo , Vias Aferentes/efeitos dos fármacos , Vias Aferentes/metabolismo , Animais , Globo Pálido/efeitos dos fármacos , Globo Pálido/metabolismo , Neostriado/efeitos dos fármacos , Neostriado/metabolismo , Núcleo Accumbens/efeitos dos fármacos
13.
Synapse ; 58(3): 193-9, 2005 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-16138317

RESUMO

The effects of sarizotan, a 5-HT(1A) agonist with additional affinity for D(3) and D(4) receptors, have been studied on the corticostriatal glutamate pathways using dual-probe microdialysis in the awake rat. Sarizotan given systemically (0.1-10 mg/kg s.c.) or perfused into the motor cortex (10 microM) produced 20-30% reduction of cortical and striatal glutamate levels. The inhibitory effects of the systemic sarizotan on cortical and striatal glutamate levels were counteracted by intracortical perfusion with the 5-HT(1A) antagonist WAY100135 (10 microM). These findings suggest that the anti-dyskinetic properties of sarizotan could be mediated via its 5-HT(1A) agonist actions in the motor cortex, leading to reduced activity in the corticostriatal glutamate pathways with reduced activation of the striatopallidal GABA pathway mediating motor inhibition.


Assuntos
Ácido Glutâmico/metabolismo , Córtex Motor/efeitos dos fármacos , Neostriado/efeitos dos fármacos , Vias Neurais/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Animais , Antiparkinsonianos/farmacologia , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/fisiologia , Discinesias/tratamento farmacológico , Discinesias/metabolismo , Discinesias/fisiopatologia , Líquido Extracelular/efeitos dos fármacos , Líquido Extracelular/metabolismo , Masculino , Microdiálise , Córtex Motor/metabolismo , Neostriado/metabolismo , Inibição Neural/efeitos dos fármacos , Inibição Neural/fisiologia , Vias Neurais/metabolismo , Compostos Orgânicos/farmacologia , Piperazinas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptor 5-HT1A de Serotonina/efeitos dos fármacos , Receptor 5-HT1A de Serotonina/metabolismo , Serotonina/metabolismo , Antagonistas da Serotonina/farmacologia , Agonistas do Receptor de Serotonina/farmacologia , Transmissão Sináptica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...